Food Hygiene

Emerging parasite zoonoses associated with water and food.

Int J Parasitol. 2000 Nov;30(12-13):1379-93.

Emerging parasite zoonoses associated with water and food.

Slifko TRSmith HVRose JB.

College of Marine Science, University of South Florida, 140 7th Avenue South, FL 33701, St. Petersburg, USA.


The environmental route of transmission is important for many protozoan and helminth parasites, with water, soil and food being particularly significant. Both the potential for producing large numbers of transmissive stages and their environmental robustness, being able to survive in moist microclimates for prolonged periods of time, pose a persistent threat to public and veterinary health. The increased demands on natural resources increase the likelihood of encountering environments and produce contaminated with parasites. For waterborne diseases, the protozoa, Cryptosporidium, Giardia and Toxoplasma, are the most significant causes, yet, with the exception of Toxoplasma, the contribution of zoonotic transmission remains unclear due to the absence of ‘standardised’ methods. The microsporidia have been documented in one waterborne outbreak, but the role of animals as the cause of contamination was not elucidated. In foods, surface contamination is associated with the faecal-oral pathogens, and some data are available to indicate that animal wastes remain an important source of contamination (e.g. cattle faeces and apple cider outbreaks), however, further work should focus on examining the source of contamination on fruit and vegetables. Increasing recognition of the burden of human fascioliasis has occurred; it is now recognised as an emerging zoonosis by the WHO. Toxoplasma, Trichinella and Taenia spp. remain important meatborne parasites, however, others, including Pleistophora-like microsporidians may be acquired from raw or lightly cooked fish or crustaceans. With increased international travel, the public health importance of the foodborne trematodiases must also be realised. Global sourcing of food, coupled with changing consumer vogues, including the consumption of raw vegetables and undercooking to retain the natural taste and preserve heat-labile nutrients, can increase the risk of foodborne transmission. A greater awareness of parasite contamination of our environment and its impact on health has precipitated the development of better detection methods. Robust, efficient detection, viability and typing methods are required to assess risks and to further epidemiological understanding.



Written by geraldmoy

February 27, 2011 at 2:31 pm